Персоналии
RUS  ENG    ЖУРНАЛЫ   ПЕРСОНАЛИИ   ОРГАНИЗАЦИИ   КОНФЕРЕНЦИИ   СЕМИНАРЫ   ВИДЕОТЕКА   ПАКЕТ AMSBIB  
 
Савенков Евгений Борисович

кандидат физико-математических наук
E-mail:

https://www.mathnet.ru/rus/person33430
Список публикаций на Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/696434
https://orcid.org/0000-0003-3363-7043

Публикации в базе данных Math-Net.Ru Цитирования
2024
1. Ю. А. Волков, Ф. Н. Воронин, О. С. Косарев, А. В. Иванов, М. Б. Марков, Е. Б. Савенков, Д. Н. Садовничий, И. А. Тараканов, “О генерации электрического разряда в диэлектрике потоком фотонов”, Препринты ИПМ им. М. В. Келдыша, 2024, 057, 17 стр.  mathnet
2. Р. Р. Полехина, Е. Б. Савенков, “Численное исследование разрывного метода Галеркина для решения уравнений Баера–Нунциато с мгновенной механической релаксацией”, Матем. моделирование, 36:4 (2024),  53–76  mathnet; R. R. Polekhina, E. B. Savenkov, “Numerical study of the discontinuous Galerkin method for solving the Baer–Munziato equations with instantaneous mechanical relaxation”, Math. Models Comput. Simul., 16:6 (2024), 826–842
3. В. А. Балашов, Е. А. Павлишина, Е. Б. Савенков, “Модель градиента плотности в сферически-симметричной постановке и ее явно-неявная диссипативная дискретизация для исследования динамики межфазной границы”, Ж. вычисл. матем. и матем. физ., 64:8 (2024),  1500–1516  mathnet  elib; V. A. Balashov, E. A. Pavlishina, E. B. Savenkov, “Density gradient model in spherically symmetric formulation and its explicit-implicit dissipative discretization for the study of phase boundary dynamics”, Comput. Math. Math. Phys., 64:8 (2024), 1823–1839
4. М. А. Бочев, И. А. Фахурдинов, Е. Б. Савенков, “Эффективное устойчивое интегрирование по времени уравнений Кана–Хилларда: явные, неявные и явно-итерационные схемы”, Ж. вычисл. матем. и матем. физ., 64:8 (2024),  1366–1387  mathnet  elib; M. A. Botchev, I. A. Fakhrutdinov, E. B. Savenkov, “Efficient and stable time integration of Cahn–Hilliard equations: explicit, implicit, and explicit iterative schemes”, Comput. Math. Math. Phys., 64:8 (2024), 1726–1746
2022
5. М. В. Алексеев, Е. Б. Савенков, “Математическая модель двухфазной гиперупругой среды. «Скалярный» случай”, Препринты ИПМ им. М. В. Келдыша, 2022, 040, 63 стр.  mathnet
6. Е. В. Зипунова, Е. Б. Савенков, “Феноменологический вывод термомеханической модели развития канала электрического пробоя типа «диффузной границы»”, Препринты ИПМ им. М. В. Келдыша, 2022, 031, 36 стр.  mathnet 1
7. Е. В. Зипунова, А. А. Кулешов, Е. Б. Савенков, “Неизотермическая модель канала электрического пробоя типа диффузной границы”, Сиб. журн. индустр. матем., 25:1 (2022),  39–53  mathnet  mathscinet 2
2021
8. Д. Н. Садовничий, Ю. М. Милёхин, С. А. Малинин, А. И. Потапенко, А. А. Чепрунов, Р. В. Ульяненков, К. Ю. Шереметьев, Н. В. Перцев, М. Б. Марков, Е. Б. Савенков, “Экспериментальное исследование образования нитевидных структур и свойств сферопластика при ударно-волновом воздействии”, Физика горения и взрыва, 57:2 (2021),  123–131  mathnet  elib; D. N. Sadovnichii, Yu. M. Miloekhin, S. A. Malinin, A. I. Potapenko, A. A. Cheprunov, R. V. Ul'yanenkov, K. Yu. Sheremet'ev, N. V. Pertsev, M. B. Markov, E. B. Savenkov, “Experimental study of the formation of threaded structures and properties spheroplastics upon a shock-wave impact”, Combustion, Explosion and Shock Waves, 57:2 (2021), 238–245
9. В. А. Балашов, Е. Б. Савенков, “Регуляризованная модель типа фазового поля для описания системы «жидкость–твердое тело» с учетом химических реакций”, Препринты ИПМ им. М. В. Келдыша, 2021, 082, 20 стр.  mathnet 1
10. Е. В. Зипунова, Е. Б. Савенков, “Неизотермическая консервативная модель динамики развития канала электрического пробоя типа «диффузной границы»”, Препринты ИПМ им. М. В. Келдыша, 2021, 019, 34 стр.  mathnet 3
11. Б. А. Корнеев, Р. Р. Тухватуллина, Е. Б. Савенков, “Численное исследование двухфазных гиперболических моделей”, Матем. моделирование, 33:4 (2021),  3–20  mathnet; B. A. Korneev, R. R. Tukhvatullina, E. B. Savenkov, “Numerical investigation of two-phase hyperbolic models”, Math. Models Comput. Simul., 13:6 (2021), 1002–1013 2
12. М. М. Краснов, В. А. Балашов, Е. Б. Савенков, “Применение сеточно-операторного подхода для эффективной реализации явных разностных схем”, Матем. моделирование, 33:2 (2021),  20–40  mathnet; M. M. Krasnov, V. A. Balashov, E. B. Savenkov, “A grid-operator framework for efficient implementation of explicit finite difference schemes”, Math. Models Comput. Simul., 13:5 (2021), 831–843
2020
13. Е. В. Зипунова, Е. Б. Савенков, “О моделях диффузной границы для описания динамики объектов высшей коразмерности”, Препринты ИПМ им. М. В. Келдыша, 2020, 122, 34 стр.  mathnet 7
14. В. А. Балашов, Е. Б. Савенков, “Регуляризованная модель типа фазового поля для описания динамики системы «жидкость-твердое тело»”, Препринты ИПМ им. М. В. Келдыша, 2020, 096, 29 стр.  mathnet 1
15. М. В. Алексеев, Е. Б. Савенков, Ф. Н. Воронин, “Численное решение уравнений Баера–Нунциато разрывным методом Галеркина”, Препринты ИПМ им. М. В. Келдыша, 2020, 048, 23 стр.  mathnet  elib
16. Е. Б. Савенков, А. В. Иванов, “Реализация метода множеств уровня для расчета геометрической эволюции трещины с применением сеточно-характеристического метода”, Препринты ИПМ им. М. В. Келдыша, 2020, 047, 32 стр.  mathnet
17. В. Е. Борисов, Е. В. Зипунова, А. В. Иванов, Б. В. Критский, Е. Б. Савенков, “Программный комплекс HFrac3D++ для решения задач геомеханики с учетом крупномасштабных флюидонаполненных трещин”, Препринты ИПМ им. М. В. Келдыша, 2020, 046, 20 стр.  mathnet
18. Е. В. Зипунова, А. В. Иванов, Е. Б. Савенков, “Решение уравнения смазочного слоя на эволюционирующих поверхностях”, Препринты ИПМ им. М. В. Келдыша, 2020, 013, 20 стр.  mathnet
19. Е. В. Зипунова, Е. Б. Савенков, “Применение метода проекции ближайшей точки для решения уравнений гидродинамики в приближении смазочного слоя”, Препринты ИПМ им. М. В. Келдыша, 2020, 010, 32 стр.  mathnet 2
20. Е. Б. Савенков, “Конечноэлементный вариант метода проекции ближайшей точки для решения уравнений на поверхностях с краем”, Препринты ИПМ им. М. В. Келдыша, 2020, 008, 36 стр.  mathnet 3
21. Е. Б. Савенков, “Решения уравнений в частных производных на поверхностях: обзор алгоритмов”, Препринты ИПМ им. М. В. Келдыша, 2020, 005, 18 стр.  mathnet 4
22. А. С. Меретин, Е. Б. Савенков, “Моделирование термопороупругой среды с учетом разрушения”, Матем. моделирование, 32:7 (2020),  59–76  mathnet; A. S. Meretin, E. B. Savenkov, “Simulation of thermoporoelastic medium with damage”, Math. Models Comput. Simul., 13:2 (2021), 218–230 1
23. Е. Н. Головченко, М. В. Якобовский, В. А. Балашов, Е. Б. Савенков, “Сравнение алгоритмов декомпозиции области в задаче прямого моделирования течения жидкости в поровом пространстве образцов горных пород”, Матем. моделирование, 32:4 (2020),  107–115  mathnet; E. N. Golovchenko, M. V. Iakobovski, V. A. Balashov, E. B. Savenkov, “Comparison of domain partitioning algorithms in the problem of direct flow simulation within rock samples at pore scale”, Math. Models Comput. Simul., 12:6 (2020), 990–995
2019
24. М. В. Алексеев, Е. Б. Савенков, “Применение разрывного метода Галеркина для решения одномерных гиперболических задач гиперупругости в неоднородной среде”, Препринты ИПМ им. М. В. Келдыша, 2019, 088, 20 стр.  mathnet  elib 1
25. А. С. Меретин, Е. Б. Савенков, “Вычислительный алгоритм для описания эволюции термопороупругой среды с учетом разрушения”, Препринты ИПМ им. М. В. Келдыша, 2019, 082, 36 стр.  mathnet  elib 1
26. А. С. Меретин, Е. Б. Савенков, “Математическая модель фильтрационных процессов в термопороупругой среде с учетом континуального разрушения”, Препринты ИПМ им. М. В. Келдыша, 2019, 058, 38 стр.  mathnet  elib 2
27. В. А. Балашов, Е. Б. Савенков, Б. Н. Четверушкин, “Вычислительные технологии программного комплекса DiMP-Hydro для моделирования микротечений”, Матем. моделирование, 31:7 (2019),  21–44  mathnet  elib; V. A. Balashov, E. B. Savenkov, B. N. Chetverushkin, “DiMP-Hydro solver for direct numerical simulation of fluid microflows within pore space of core samples”, Math. Models Comput. Simul., 12:2 (2020), 110–124 9
28. Е. Б. Савенков, В. Е. Борисов, Б. В. Критский, “Представление поверхности с помощью проекции ближайшей точки в методе X-FEM”, Матем. моделирование, 31:6 (2019),  18–42  mathnet  elib; E. B. Savenkov, V. E. Borisov, B. V. Kritsky, “Utilization of closest point projection surface representation in extended finite element method”, Math. Models Comput. Simul., 12:1 (2020), 36–52 4
29. А. В. Блонский, Е. Б. Савенков, “Моделирование двухфазных течений в трещиноватой среде с кавернами”, Матем. моделирование, 31:2 (2019),  78–94  mathnet  elib; A. V. Blonsky, E. B. Savenkov, “Two-phase flow modelling within fractured vuggy reservoir”, Math. Models Comput. Simul., 11:5 (2019), 778–788
2018
30. М. В. Алексеев, Ф. Н. Воронин, В. А. Егорова, М. Е. Жуковский, М. Б. Марков, Е. Б. Савенков, Р. В. Усков, “О расчете исходных данных для моделирования радиационно-индуцированных эффектов в материалах пористого типа”, Препринты ИПМ им. М. В. Келдыша, 2018, 208, 21 стр.  mathnet  elib 1
31. М. В. Алексеев, А. А. Кулешов, Н. Г. Судобин, Е. Б. Савенков, “Математическое моделирование термомеханического поведения непроницаемой пористой среды”, Препринты ИПМ им. М. В. Келдыша, 2018, 136, 23 стр.  mathnet  elib
32. В. А. Балашов, Е. Б. Савенков, “Численный расчет двумерных течений двухфазной жидкости с учетом смачиваемости с помощью квазигидродинамических уравнений”, Препринты ИПМ им. М. В. Келдыша, 2018, 131, 18 стр.  mathnet  elib 2
33. В. А. Балашов, Е. Б. Савенков, “О численном алгоритме для расчета двумерных двухфазных течений с учетом эффекта смачивания на основе квазигидродинамической регуляризации”, Препринты ИПМ им. М. В. Келдыша, 2018, 062, 36 стр.  mathnet  elib 1
34. А. В. Блонский, Е. Б. Савенков, “Математическое моделирование течений двухфазного флюида в трещиновато-кавернозной среде”, Препринты ИПМ им. М. В. Келдыша, 2018, 049, 18 стр.  mathnet  elib
35. Е. Б. Савенков, В. Е. Борисов, Б. В. Критский, “Алгоритм метода X-FEM с представлением поверхности трещины на основе проекции ближайшей точки”, Препринты ИПМ им. М. В. Келдыша, 2018, 042, 36 стр.  mathnet  elib 2
36. М. Е. Жуковский, Р. В. Усков, Е. Б. Савенков, М. В. Алексеев, М. Б. Марков, Ф. Н. Воронин, “Модель переноса излучения в веществе гетерогенных материалов пористого типа”, Матем. моделирование, 30:10 (2018),  3–20  mathnet; M. E. Zhukovskiy, R. V. Uskov, E. B. Savenkov, M. V. Alekseev, M. B. Markov, F. N. Voronin, “The model of the radiation transport in the matter of heterogeneous materials of the porous type”, Math. Models Comput. Simul., 11:3 (2019), 415–425 4
37. В. А. Балашов, Е. Б. Савенков, “Квазигидродинамическая модель для описания течений многофазной жидкости с учетом межфазного взаимодействия”, Прикл. мех. техн. физ., 59:3 (2018),  57–68  mathnet  elib; V. A. Balashov, E. B. Savenkov, “Model for multiphase fluid flows with interphase interaction taken into account”, J. Appl. Mech. Tech. Phys., 59:3 (2018), 434–444 32
2017
38. А. В. Блонский, Е. Б. Савенков, “Математическая модель и алгоритм расчета течения в дискретной системе трещин с кавернами”, Препринты ИПМ им. М. В. Келдыша, 2017, 133, 18 стр.  mathnet 2
39. В. А. Балашов, А. А. Злотник, Е. Б. Савенков, “Численный алгоритм для расчета трехмерных двухфазных течений с поверхностными эффектами в областях с воксельной геометрией”, Препринты ИПМ им. М. В. Келдыша, 2017, 091, 28 стр.  mathnet 5
40. В. Е. Борисов, А. В. Иванов, Б. В. Критский, И. С. Меньшов, Е. Б. Савенков, “Численное моделирование задач пороупругости”, Препринты ИПМ им. М. В. Келдыша, 2017, 081, 36 стр.  mathnet 4
41. А. В. Блонский, Д. А. Митрушкин, Е. Б. Савенков, “Моделирование течений в дискретной системе трещин: вычислительные алгоритмы”, Препринты ИПМ им. М. В. Келдыша, 2017, 066, 30 стр.  mathnet 5
42. А. В. Блонский, Д. А. Митрушкин, Е. Б. Савенков, “Моделирование течений в дискретной системе трещин: физико-математическая модель”, Препринты ИПМ им. М. В. Келдыша, 2017, 065, 28 стр.  mathnet 6
43. М. В. Алексеев, А. А. Кулешов, Е. Б. Савенков, “Математическая модель поведения непроницаемой пористой среды при температурном воздействии”, Препринты ИПМ им. М. В. Келдыша, 2017, 035, 34 стр.  mathnet 3
44. М. В. Алексеев, А. А. Кулешов, Е. Б. Савенков, “Термомеханическая модель непроницаемой пористой среды с химически активным наполнителем”, Матем. моделирование, 29:12 (2017),  117–133  mathnet  elib; M. V. Alekseev, A. A. Kuleshov, E. B. Savenkov, “Thermomechanical model for impermeable porous medium with chemically active filler”, Math. Models Comput. Simul., 10:4 (2018), 459–471  scopus 3
45. А. В. Каракин, М. М. Рамазанов, В. Е. Борисов, И. С. Меньшов, Е. Б. Савенков, “Автомодельное решение задачи о трещине гидроразрыва пласта для пороупругой среды”, Матем. моделирование, 29:4 (2017),  59–74  mathnet  elib; A. V. Karakin, M. M. Ramazanov, V. E. Borisov, I. S. Men'shov, E. B. Savenkov, “Self-similar solution of hydraulic fracture problem for poroelastic medium”, Math. Models Comput. Simul., 9:6 (2017), 657–668  scopus 2
2016
46. А. А. Люпа, Е. Б. Савенков, “Модель двухфазной фильтрации с релаксацией потока и анализ эффективности применения явных схем”, Препринты ИПМ им. М. В. Келдыша, 2016, 129, 16 стр.  mathnet 1
47. В. А. Балашов, А. А. Злотник, Е. Б. Савенков, “Исследование баротропной квазигидродинамической модели двухфазной смеси с учетом поверхностных эффектов”, Препринты ИПМ им. М. В. Келдыша, 2016, 089, 25 стр.  mathnet 2
48. В. А. Балашов, Е. Б. Савенков, “Численное исследование двумерной квазигидродинамической модели течения двухфазной изотермической жидкости с учетом поверхностных эффектов”, Препринты ИПМ им. М. В. Келдыша, 2016, 013, 20 стр.  mathnet 3
2015
49. В. Е. Борисов, А. А. Кулешов, Е. Б. Савенков, С. Е. Якуш, “Программный комплекс TCS 3D: вычислительная модель”, Препринты ИПМ им. М. В. Келдыша, 2015, 110, 20 стр.  mathnet 3
50. В. А. Балашов, Е. Б. Савенков, “Применение квазигидродинамической системы уравнений для прямого моделирования течений в микрообразцах горных пород”, Препринты ИПМ им. М. В. Келдыша, 2015, 084, 20 стр.  mathnet 3
51. В. А. Балашов, Е. Б. Савенков, “Квазигидродинамическая система уравнений для описания течений многофазной жидкости с учетом поверхностных эффектов”, Препринты ИПМ им. М. В. Келдыша, 2015, 075, 37 стр.  mathnet 7
52. В. А. Балашов, Е. Б. Савенков, “Феноменологический вывод квазигидродинамической системы уравнений с учетом объемной вязкости”, Препринты ИПМ им. М. В. Келдыша, 2015, 068, 25 стр.  mathnet 2
53. В. Е. Борисов, А. А. Кулешов, Е. Б. Савенков, С. Е. Якуш, “Программный комплекс TCS $\mathrm{3D}$: математическая модель”, Препринты ИПМ им. М. В. Келдыша, 2015, 006, 20 стр.  mathnet 5
54. В. А. Балашов, Е. Б. Савенков, “Численное исследование квазигидродинамической системы уравнений для расчета течений при малых числах Маха”, Ж. вычисл. матем. и матем. физ., 55:10 (2015),  1773–1782  mathnet  mathscinet  elib; V. A. Balashov, E. B. Savenkov, “Numerical study of a quasi-hydrodynamic system of equations for flow computation at small mach numbers”, Comput. Math. Math. Phys., 55:10 (2015), 1743–1751  isi  elib  scopus 10
2013
55. В. Е. Борисов, Б. В. Критский, Е. Б. Савенков, “Явные схемы для задач фильтрации многофазного многокомпонентного флюида в пористой среде”, Препринты ИПМ им. М. В. Келдыша, 2013, 092, 27 стр.  mathnet
56. В. Е. Борисов, Б. В. Критский, Н. А. Марченко, Д. А. Митрушкин, Е. Б. Савенков, “Композиционная неизотермическая модель фильтрации в пористой среде с учетом химических реакций и активной твердой фазы”, Препринты ИПМ им. М. В. Келдыша, 2013, 091, 32 стр.  mathnet 3
57. А. Н. Галыбин, Д. А. Митрушкин, Ш. А. Мухамедиев, Е. Б. Савенков, “Вычислительные алгоритмы восстановления полей напряжений в упругой области по данным наблюдений”, Препринты ИПМ им. М. В. Келдыша, 2013, 090, 20 стр.  mathnet
58. В. Е. Борисов, Е. Б. Савенков, “Численное исследование метода предобуславливания Generalized Nested Factorization для промышленных задач пластовой фильтрации”, Препринты ИПМ им. М. В. Келдыша, 2013, 012, 18 стр.  mathnet
2008
59. М. П. Галанин, Е. Б. Савенков, С. А. Токарева, “Решение задач газовой динамики с ударными волнами RKDG-методом”, Матем. моделирование, 20:11 (2008),  55–66  mathnet  mathscinet  zmath; M. P. Galanin, E. B. Savenkov, S. A. Tokareva, “The solution of gas dynamics problems with shock waves using Runge–Kutta discontinous Galerkin method”, Math. Models Comput. Simul., 1:5 (2009), 635–645  scopus 9
2007
60. А. Е. Бутырев, М. П. Галанин, В. Г. Гнеденко, А. В. Переславцев, Е. Б. Савенков, С. С. Тресвятский, “Математическое моделирование форсунки канала плазматрона в двумерном приближении”, Препринты ИПМ им. М. В. Келдыша, 2007, 017, 30 стр.  mathnet
2006
61. М. П. Галанин, Е. В. Грищенко, Е. Б. Савенков, С. А. Токарева, “Применение RKDG метода для численного решения задач газовой динамики”, Препринты ИПМ им. М. В. Келдыша, 2006, 052, 31 стр.  mathnet 1
62. М. П. Галанин, С. А. Лазарева, Е. Б. Савенков, “Метод конечных суперэлементов для решения трехмерных задач теории упругости. Численное исследование”, Препринты ИПМ им. М. В. Келдыша, 2006, 044, 29 стр.  mathnet 1
63. М. П. Галанин, Е. Б. Савенков, Ю. М. Темис, И. А. Щеглов, Д. А. Яковлев, “Применение метода конечных суперэлементов для расчета напряженно-деформированного состояния композиционных материалов”, Препринты ИПМ им. М. В. Келдыша, 2006, 039, 30 стр.  mathnet
64. М. П. Галанин, Е. Б. Савенков, “Совместное использование метода конечных элементов и метода конечных суперэлементов”, Ж. вычисл. матем. и матем. физ., 46:2 (2006),  270–283  mathnet  mathscinet  zmath  elib; M. P. Galanin, E. B. Savenkov, “Combined use of the finite element and finite superelement methods”, Comput. Math. Math. Phys., 46:2 (2006), 258–270  scopus 3
2005
65. М. П. Галанин, Е. Б. Савенков, С. А. Токарева, “Применение разрывного метода Галеркина для численного решения квазилинейного уравнения переноса”, Препринты ИПМ им. М. В. Келдыша, 2005, 105, 35 стр.  mathnet 4
66. М. П. Галанин, С. А. Лазарева, Е. Б. Савенков, “Численное исследование метода конечных суперэлементов на примере решения задачи о скважине для уравнения Лапласа”, Препринты ИПМ им. М. В. Келдыша, 2005, 079, 30 стр.  mathnet 3
67. М. П. Галанин, Д. С. Милютин, Е. Б. Савенков, “Разработка, исследование и применение метода конечных суперэлементов для решения бигармонического уравнения”, Препринты ИПМ им. М. В. Келдыша, 2005, 059, 26 стр.  mathnet 1
68. М. П. Галанин, Е. Б. Савенков, “Метод конечных суперэлементов для решения задач математической физики в неоднородных областях”, ИТиВС, 2005, № 3,  34–49  mathnet
2004
69. М. П. Галанин, Е. Б. Савенков, Ю. М. Темис, “Метод конечных суперэлементов Федоренко для задач теории упругости”, Препринты ИПМ им. М. В. Келдыша, 2004, 038, 38 стр.  mathnet
70. М. П. Галанин, Е. Б. Савенков, “Совместное использование метода конечных элементов и метода конечных суперэлементов”, Препринты ИПМ им. М. В. Келдыша, 2004, 013, 32 стр.  mathnet
71. М. П. Галанин, Е. Б. Савенков, “Метод конечных суперэлементов для задачи о скоростном скин-слое”, Препринты ИПМ им. М. В. Келдыша, 2004, 003, 32 стр.  mathnet 3
2003
72. М. П. Галанин, Е. Б. Савенков, “К обоснованию метода конечных суперэлементов”, Ж. вычисл. матем. и матем. физ., 43:5 (2003),  713–729  mathnet  mathscinet  zmath; M. P. Galanin, E. B. Savenkov, “On the justification of the finite superelement method”, Comput. Math. Math. Phys., 43:5 (2003), 680–695 12
2001
73. М. П. Галанин, Е. Б. Савенков, “О связи метода конечных суперэлементов Федоренко и проекционных методов”, Препринты ИПМ им. М. В. Келдыша, 2001, 067, 35 стр.  mathnet

Доклады и лекции в базе данных Math-Net.Ru
1. «Цифровой керн»: модели диффузной границы и математическое моделирование микротечений многофазных сред в пористых средах
Е. Б. Савенков
Вторая конференция Математических центров России. Пленарные доклады
11 ноября 2022 г. 10:00   
2. Phase-field models and numerical simulation of complex multi-phase flows at porescale
Е. Б. Савенков
V Международная конференция «Суперкомпьютерные технологии математического моделирования» (СКТеММ'22)
29 июня 2022 г. 15:20   
3. Прямое численное моделирование течений в микрообразцах горных пород
Е. Б. Савенков, В. А. Балашов
Актуальные проблемы прикладной математики
19 июня 2020 г.   
4. Термомеханическая модель поведения непроницаемой пористой среды с химически активным наполнителем
М. В. Алексеев, Е. Б. Савенков
Международная конференция «Современные проблемы механики сплошной среды», посвященная памяти академика Леонида Ивановича Седова в связи со стодесятилетием со дня его рождения
15 ноября 2017 г. 15:40
5. Математическая модель и вычислительные алгоритмы для моделирования развития трещины ГРП в трехмерной постановке
В. Е. Борисов, А. И. Иванов, Б. В. Критский, И. С. Меньшов, Е. Б. Савенков
Международная конференция «Современные проблемы механики сплошной среды», посвященная памяти академика Леонида Ивановича Седова в связи со стодесятилетием со дня его рождения
13 ноября 2017 г. 17:25

Организации
 
  Обратная связь:
 Пользовательское соглашение  Регистрация посетителей портала  Логотипы © Математический институт им. В. А. Стеклова РАН, 2025